SRI VENKATESWARA UNIVERSITY : TIRUPATI

B.A./B.Sc. MATHEMATICS

REVISED SYLLABUS FOR CORE COURSES

CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

CORE COURSES STRUCTURE

(Sem-I to Sem-IV)

Course	Subje	Н	Cred	IA	ES	Tot
	ct Differential	rs.	its			al
Course -I	Equations &	6	5	25	75	100
	Differential Equations					
	Problem Solving Sessions					
Course -II	Three dimensional analytical					
	Solid geometry					
	&	6	5	25	75	100
	Three dimensional analytical					
	Solid Geometry					
	Problem Solving Sessions					
Course -III	Abstract	6	5	25	75	100
	Algebra &					
	Abstract Algebra					
	Problem Solving Sessions					
Course -IV	Real	6	5	25	75	100
	Analysis &					
	Real Analysis					
	Problem Solving Sessions					
Course -V	Linear	6	5	25	75	100
	Algebra &					
	Linear Algebra					
	Problem Solving Sessions					
		l				

SRI VENKATESWARA UNIVERSITY: TIRUPATI

SEMESTER-I

CBCS/ SEMESTER SYSTEMB.A./B.Sc. MATHEMATICS (w.e.f. 2020-21 admitted Batch) DIFFERENTIAL EQUATIONS SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. Solve linear differential equations
- 2. Convert non-exact homogeneous equations to exact differential equations by using integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not of the first degree.
- 4. Solve higher-order linear differential equations, both homogeneous and non homogeneous, with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving differential equations.

Course Syllabus:

UNIT – I (12 Hours)

Differential Equations of first order and first degree:

Linear Differential Equations; Differential equations reducible to linear form; Exact differential equations; Integrating factors; Change of variables.

UNIT - II (12 Hours)

Differential Equations of first order but not of the first degree:

Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that do not contain x (or y); Equations homogeneous in x and y; Equations of the first degree in x and y. Clairaut's Equation.

UNIT – III (12 Hours)

Higher order linear differential equations-I:

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

General Solution of f(D)y=0. General Solution of f(D)y=Q when Q is a function of x,

P.I. of f(D)y = Q when $Q = be^{ax}$

P.I. of f(D)y = Q when Q is being or bcos ax.

UNIT - IV (12 Hours)

Higher order linear differential equations-II:

Solution of the non-homogeneous linear differential equations with constant coefficients.

P.I. of f(D)y = Q when $Q = bx^k$

P.I. of f(D)y = Q when $Q = e^{ax}V$, where V is a function of x.

P.I. of f(D)y = Q when Q = xV, where V is a function of x.

UNIT -V (12 Hours)

Higher order linear differential equations-III:

Method of variation of parameters; Linear differential Equations with non-constant coefficients; The Cauchy-Euler Equation, Legendre's linear equations.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Applications of Differential Equations to Real life Problem / Problem Solving. **Text Book:**

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

Reference Books:

- 1.A text book of Mathematics for B.A/B.Sc, Vol 1, by N. Krishna Murthy & others, published by S.Chand & Company, New Delhi.
- 2.Ordinary and Partial Differential Equations by Dr. M.D,Raisinghania, published by S. Chand & Company, New Delhi.
- 3.Differential Equations with applications and programs S. Balachandra Rao & HR Anuradha-Universities Press.
- 4.Differential Equations -Srinivas Vangala & Madhu Rajesh, published by Spectrum University Press.

Dr.G.Sreenivasulu Reddy, BOS Chairman.

Mathematics, S.V.University, Tirupati

Recommended Question Paper Patterns and Models BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

Unit	TOPIC	S.A.Q(including choice)	E.Q(including choice)	Total Marks
I	Differential Equations of 1 st order and 1 st degree	2	2	30
II	Orthogonal Trajectories, Differential Equations of 1 st order but not of 1 st degree	2	2	30
III	Higher Order Linear Differential Equations (with constant coefficients) – I	1	2	25
IV	Higher Order Linear Differential Equations (with constant coefficients) – II	2	2	30
V	Higher Order Linear Differential Equations- III (with non constant coefficients)	1	2	25
	TOTAL	8	10	140

S.A.Q. = Short answer questions (5 marks)

E.Q. = Essay questions (10 marks)

Short answer questions $: 5 \times 5 \text{ M} = 25 \text{ M}$

Essay questions : $5 \times 10 M = 50 M$

.....

Total Marks = 75 M

.....

SRI VENKATESWARA UNIVERSITY: TIRUPATI

CBCS/ SEMESTER SYSTEM

I SEMESTER

(W.e.f 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS SE-I, DIFFERENTIAL EQUATIONS

MATHEMATICS MODEL PAPER

Time: 3Hrs Max.Marks:75M

SECTION - A

Answer any <u>FIVE</u> questions. Each question carries <u>FIVE</u> marks5 X 5 M=25 M

1. Solve
$$x \frac{dy}{dx} + 2y - x^2 \log x = 0$$

- 2. Solve $y + px = p^2x^4$.
- 3. Solve (px y)(py + x) = 2p
- 4. Solve $(D^2 3D + 2) = \cosh x$
- 5. Solve $(D^2 3D + 2)y = \sin e^{-x}$
- 6. Solve $(D^2 6D + 13)y = 8e^x \sin 2x$
- $7.\text{Solve}(D^2 4D + 3)y = \sin 3x \cos 2x.$

8. Solve
$$x^2y'' - 2x(1 + x)y' + 2(1 + x)y = x^3$$

SECTION - B

Answer ALL the questions. Each question carries TEN marks. 5 X 10 M = 50 M

9 a) Solve
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$

(Or)
9b). Solve $\frac{dy}{dx}(x^2y^3 + xy) = 1$

10.a) Solve
$$p^2 + 2py \cot x = y^2$$
(Or)

10 b) Find the orthogonal trajectories of the family of curves $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ where 'a' is the parameter.

11a) Solve
$$(D^3 + D^2 - D - 1)y = \cos 2x$$
 (Or)

11b) Solve
$$(D^2 - 4D + 3)y = \sin 3x \cos 2x$$

12 a) Solve (D² - 2D + 4)
$$y = 8(x^2 + e^{2x} + \sin 2x)$$
 (Or)

12b) Solve
$$(D^2 + 3D + 2)y = xe^x \sin x$$

13a) Solve ($D^2 - 2D$) $y = e^x \sin x$ by the method of variation of parameters.

13 b) Solve
$$3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$$

Dr.G.Sreenivasulu Reddy, BOS Chairman.

Mathematics, S.V.University, Tirupati.