SRI VENKATESWARA UNIVERSITY - TIRUPATI

B.S.c., (Honours) in **ZOOLOGY FIRST YEAR – I SEMESTER**

(W.E.F. Academic Year 2023-24)

COURSE 1: INTRODUCTION TO CLASSICAL BIOLOGY

Theory	Credits: 4	5 hrs/week

Learning objectives

The student will be able to learn the diversity and classification of living organisms and understand their chemical, cytological, evolutionary and genetic principles.

Learning Outcomes

- 1. Learn the principles of classification and preservation of biodiversity
- 2. Understand the plant anatomical, physiological and reproductive processes.
- 3. Knowledge on animal classification, physiology, embryonic development and their economic importance.
- 4. Outline the cell components, cell processes like cell division, heredity and molecular processes.
- 5. Comprehend the chemical principles in shaping and driving the macromolecules and life processes.

Unit 1: Introduction to systematics, taxonomy and ecology.

- 1.1. Systematics Definition and concept, Taxonomy Definition and hierarchy.
- 1.2. Nomenclature ICBN and ICZN, Binomial and trinomial nomenclature.
- 1.3. Ecology Concept of ecosystem, Biodiversity and conservation.
- 1.4. Pollution and climate change.

Unit 2: Essentials of Botany.

- 2.1. The classification of plant kingdom.
- 2.2. Plant physiological processes (Photosynthesis, Respiration, Transpiration, phytohormones).
- 2.3. Structure of flower Micro and macro sporogenesis, pollination, fertilization and structure of mono and dicot embryos.
- 2.4 Mushroom cultivation, floriculture and landscaping.

Unit 3: Essentials of Zoology

- 3.1. The classification of Kingdom Animalia and Chordata.
- 3.2 Animal Physiology Basics of Organ Systems & their functions, Hormones and Disorders
- 3.3 Developmental Biology Basic process of development (Gametogenesis, Fertilization, Cleavage and Organogenesis)
- 3.4 Economic Zoology Sericulture, Apiculture, Aquaculture

Unit 4: Cell biology, Genetics and Evolution

- 4.1. Cell theory, Ultrastructure of prokaryotic and eukaryotic cell, cell cycle.
- 4.2. Chromosomes and heredity Structure of chromosomes, concept of gene.
- 4.3. Central Dogma of Molecular Biology.
- 4.4. Origin of life

Unit 5: Essentials of chemistry

- 5.1. Definition and scope of chemistry, applications of chemistry in daily life.
- 5.2. Branches of chemistry
- 5.3. Chemical bonds ionic, covalent, noncovalent Vander Waals, hydrophobic, hydrogen bonds.
- 5.4. Green chemistry

References

- 1. Sharma O.P., 1993. Plant taxonomy. 2nd Edition. McGraw Hill publishers.
- 2. Pandey B.P., 2001. The textbook of botany Angiosperms. 4th edition. S. Chand publishers, New Delhi, India.
- 3. Jordan E.L., Verma P.S., 2018. Chordate Zoology. S. Chand publishers, New Delhi, India.
- 4. Rastogi, S.C., 2019. Essentials of animal physiology. 4th Edition. New Age International Publishers.
- 5. Verma P.S., Agarwal V.K., 2006. Cell biology, genetics, Molecular Biology, Evolution and

Ecology. S. Chand publishers, New Delhi, India.

- 6. Sathyanarayana U., Chakrapani, U., 2013. Biochemistry. 4th Edition. Elsevier publishers.
- 7. Jain J.L., Sunjay Jain, Nitin Jain, 2000. Fundamentals of Biochemistry. S. Chand publishers, New Delhi, India.
- 8. Karen Timberlake, William Timberlake, 2019. Basic chemistry. 5th Edition. Pearson publishers.
- 9. Subrata Sen Gupta, 2014. Organic chemistry. 1st Edition. Oxford publishers.

ACTIVITIES:

- 1. Make a display chart of life cycle of nonflowering plants.
- 2. Make a display chart of life cycle of flowering plants.
- 3. Study of stomata
- 4. Activity to prove that chlorophyll is essential for photosynthesis
- 5. Study of pollen grains.
- 6. Observation of pollen germination.

- 7. Ikebana.
- 8. Differentiate between edible and poisonous mushrooms.
- 9. Visit a nearby mushroom cultivation unit and know the economics of mushroom cultivation.
- 10. Draw the Ultrastructure of Prokaryotic and Eukaryotic Cell
- 11. Visit to Zoology Lab and observe different types of preservation of specimens
- 12. Hands-on experience of various equipment Microscopes, Centrifuge, pH Meter, Electronic Weighing Balance, Laminar Air Flow
- 13. Visit to Zoo / Sericulture / Apiculture / Aquaculture unit
- 14. List out different hormonal, genetic and physiological disorders from the society

MODEL QUESTION PAPER

B.Sc., ZOOLOGY MAJOR

FIRST YEAR - SEMESTER- I

Course 1: INTRODUCTION TO CLASSICAL BIOLOGY

(w.e.f. 2023-24)

Time: 3 Hours Max. Marks: 75

Part - A

Answer any **five** questions. Each question carries **5 marks**.Draw labelled diagram wherever necessary.

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Binominal nomenclature
- 2. Pollination
- 3. Ecology
- 4. Hormone disorders
- 5. Apiculture
- 6. Cell cycle
- 7. Chemical bond
- 8. Pollution

Part - B

Answer any **five** questions. Each question carries **10 marks**. Draw labelled diagrams wherever necessary.

 $(5 \times 10 = 50 \text{ Marks})$

- 9. What is taxonomy? Explain in detail about taxonomy.
- 10. What is biodiversity and why it is important for conservation.
- 11. Discuss about floriculture.
- 12. Describe photosynthesis in plants.
- 13. Discuss about the classification of kingdom Animalia.
- 14. What are the main organ systems in animals and state their basic functions.
- 15. Write about the ultrastructure of eukaryotic cell.
- 16. Discuss about origin of life.
- 17. Write about different branches of chemistry.
- 18. Discuss about green chemistry.

==ooOoo==

SRI VENKATESWARA UNIVERSITY - TIRUPATI

B.S.c., (Honours) in **ZOOLOGY**

FIRST YEAR - I SEMESTER

(W.E.F. Academic Year 2023 - 24)

COURSE 2: INTRODUCTION TO APPLIED BIOLOGY

5 hrs/week

Theory Credits: 4

Learning objectives
The student will be able to learn the foundations and principles of microbiology,
immunology, biochemistry, biotechnology, analytical tools, quantitative methods, and
bioinformatics.
Learning Outcomes
1. Learn the history, ultrastructure, diversity and importance of microorganisms.
2. Understand the structure and functions of macromolecules.
3. Knowledge on biotechnology principles and its applications in food and medicine.
4. Outline the techniques, tools and their uses in diagnosis and therapy.
5. Demonstrate the bioinformatics and statistical tools in comprehending the
complex biological data.
Unit 1: Essentials of Microbiology and Immunology
1.1. History and Major Milestones of Microbiology; Contributions of Edward Jenner,

1.2. Groups of Microorganisms – Structure and characteristics of Bacteria, Fungi, Archaea

Louis

and

Virus.

Pasteur, Robert Koch and Joseph Lister.

- 1.3. Applications of microorganisms in Food, Agriculture, Environment, and Industry.
- 1.4. Immune system Immunity, types of immunity, cells and organs of immune system.

Unit 2: Essentials of Biochemistry

- 2.1. Biomolecules I Carbohydrates, Lipids.
- 2.2. Biomolecules II Amino acids & Proteins.
- 2.3. Biomolecules III Nucleic acids -DNA and RNA.
- 2.4. Basics of Metabolism Anabolism and catabolism.

Unit 3: Essentials of Biotechnology

- 3.1. History, scope, and significance of biotechnology. Applications of biotechnology in Plant, Animal, Industrial and Pharmaceutical sciences.
- 3.2. Environmental Biotechnology Bioremediation and Biofuels, Biofertilizers and Biopesticides.
- 3.3. Genetic engineering Gene manipulation using restriction enzymes and cloning vectors; Physical, chemical, and biological methods of gene transfer.
- 3.4. Transgenic plants Stress tolerant plants (biotic stress BT cotton, abiotic stress salt tolerance). Transgenic animals Animal and disease models.

Unit 4: Analytical Tools and techniques in biology – Applications

- 4.1. Applications in forensics PCR and DNA fingerprinting
- 4.2. Immunological techniques Immunoblotting and ELISA.
- 4.3. Monoclonal antibodies Applications in diagnosis and therapy.
- 4.4. Eugenics and Gene therapy

Unit 5: Biostatistics and Bioinformatics

- 5.1. Data collection and sampling. Measures of central tendency Mean, Median, Mode.
- 5.2. Measures of dispersion range, standard deviation and variance. Probability and tests of significance.
- 5.3. Introduction, Genomics, Proteomics, types of Biological data, biological databases-NCBI, EBI, Gen Bank; Protein 3D structures, Sequence alignment
- 5.4. Accessing Nucleic Acid and Protein databases, NCBI Genome Workbench

REFERENCES:

- Gerard J., Tortora, Berdell R. Funke, Christine L. Case., 2016. Microbiology: An Introduction. 11th Edition. Pearson publications, London, England.
- 2. Micale, J. Pelczar Jr., E.C.S. Chan., Noel R. Kraig., 2002. Pelczar Microbiology. 5th Edition. McGraw Education, New York, USA.
- 3. Sathyanarayana U., Chakrapani, U., 2013. Biochemistry. 4th Edition. Elsevier publishers.
- 4. Jain J.L., Sunjay Jain, Nitin Jain, 2000. Fundamentals of Biochemistry. S. Chand publishers, New Delhi, India.
- 5. R.C. Dubey, 2014. Advanced Biotechnology. S. Chand Publishers, New Delhi, India.
- 6. Colin Ratledge, Bjorn, Kristiansen, 2008. Basic Biotechnology. 3rd Edition. Cambridge

Publishers.

- 7. U. Sathyanarayana, 2005. Biotechnology. 1st Edition. Books and Allied Publishers pvt. ltd., Kolkata.
- 8. Upadhyay, Upadhyay and Nath. 2016. Biophysical Chemistry, Principles and Techniques. Himalaya Publishing House.

- 9. Arthur M. Lesk. Introduction to Bioinformatics. 5th Edition. Oxford publishers.
- 10. AP Kulkarni, 2020. Basics of Biostatistics. 2nd Edition. CBS publishers.

ACTIVITIES:

- 1. Identification of given organism as harmful or beneficial.
- 2. Observation of microorganisms from house dust under microscope.
- 3. Finding microorganism from pond water.
- 4. Visit to a microbiology industry or biotech company.
- 5. Visit to a waste water treatment plant.
- 6. Retrieving a DNA or protein sequence of a gene'
- 7. Performing a BLAST analysis for DNA and protein.
- 8. Problems on biostatistics.
- 9. Field trip and awareness programs on environmental pollution by different types of wastesand hazardous materials.
- 10. Demonstration on basic biotechnology lab equipment.
- 11. Preparation of 3D models of genetic engineering techniques.
- 12. Preparation of 3D models of transgenic plants and animals.

MODELQUESTION PAPER

B.Sc., ZOOLOGY MAJOR

FIRST YEAR - SEMESTER- I

Course 2: INTRODUCTION TO APPLIED BIOLOGY

(w.e.f. 2023-24)

Time: 3 Hours Max. Marks: 75

Part - A

Answer any **five** questions. Each question carries **5 marks**.Draw labelled diagram wherever necessary.

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Structure and characteristics of bacteria
- 2. Immune system
- 3. DNA
- 4. Amino acids
- 5. Bio-fertilizers
- 6. PCR
- 7. ELISA
- 8. Gene Bank

Part - B

Answer any **five** questions. Each question carries **10 marks**. Draw labelled diagrams wherever necessary.

 $(5 \times 10 = 50 \text{ Marks})$

- 9. Explain the history and major milestones of microbiology
- 10. Write about different types of immunity.
- 11. Discuss about carbohydrates.
- 12. Write about anabolism and catabolism.
- 13.Explain the applications of Biotechnology in plants and animals.
- 14. Write about Biofuels.
- 15. What is DNA fingerprinting technology and how it is used for identification.
- 16. What is Gene therapy and how it is used to treat genetic disorders.
- 17.Discuss about Genomics.
- 18. Write about accessing nucleic acid.

==ooOoo==